12
13.
15.

16.
17.

66

A.F. Volkov, M. Kogan: Sov.Phys.Usp. 11, 881 (1969)

V. de Giorgio, M.0. Scully: Phys.Rev. A 2, 1170 (1970)

C. Shannon, W. Weaver: The Mathematical Theory of Communication
(University of I1linois Press, Urbana 1949)

.T. Jaynes: Phys.Rev. 106, 620 (1957)

. Mori: Phys.Rev. 115, 298 (1959)

-A. Mclennan: Advances in Chemical Physics (Ed.: I. Prigogine)
(Interscience, New York 1963)

D.N. Zubarev: Sov.Phys.Dokl. 10, 526 (1965)

F. Schlégl: Z.Physik 253, 147 (1972)

H. Busch: Annalen d. Physik 64, 4061 (1921)

B

D

H

T m

. Ross, J. Litster: Phys.Rev. A 15, 1246 (1977)

. Bedeaux, P. Mazur, R.A. Pasmanier: Physica B&A, 355 (1977)

. Haken: Synergetics, an Introduction (Springer, Berlin Heidel-
berg New York 1977)

On the Kinetics of Nucleation in Isochoric Gases

L. Schimansky-Geierl, F. Schweitzer2 , W. Ebeling!, and H. Ulbricht?2

Humboldt- Universitit Berlin, Sektion Physik, Bereich 04, PSF 1297,
DDR-1086 Berlin, GDR

2Wilhelm-Pieck- Universitit Rostock, Sektion Physik, Universitatsplatz 3,
DDR-2500 Rostock, GDR

1. Introduction

The process of phase separation in gases has been studied in terms
of several different theoretical models (for review see refs. /1-3/).
The classical nucleation theory /4-7/ is based on the droplet model,
corresponding to finite and discrete fluctuations. Other approaches
use theoretical methods with a continous description of the density
fluctuations /8-13/. The classical nucleation theory /4-7/ is based
on the assumption, that the density of free particles is constant
and that the number of all particles in the system is not limited.
These assumptions correspond to a nucleation process in an infi-
nite system. In the present work the problem will be considered how
the finite system size will modify the nucleation process. Basing
on the droplet model we propose the following model:

We consider a gas of N particles in a closed system with a constant
volume V at a temperature T; it means:

N = const.; V = const.; T = const. (1.

Oue to interactions between the particles (e.g. chemical reactions,
collisions) the N particles will bond in clusters and a distribu-
tion of zH monomers (free particles), zN dimers (bound states of 2

particles), ..., zz N-mers develops. This distribution will be des-
cribed by
zurf Ny oooNy LN ) (1.2
Because of (1.1), the relation (1.3) holds:
N
N= % 1N, = const. (1.3
=1 1

1 is the number of particles in the cluster; the number of clusters
consisting of 1 particles is denoted by ZH.
From (1.3) it follows further that the maximal number of zH is
given by
o<y < s, N (1.4)
The clusters are assumed to be an ideal mixture.
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2. FEquilibrium Distribution

With respect to the constraints (1.1) the equilibrium distribution
of clusters is given by the canonical ensemble. We denote the proba-
bility distribution for the N particles in the phase space as

sADH...DzuuH...uzvn where G, are the space cocrdinates and p; are the

momeéntum coordinates of the particles with the number 1=1,...,N. In
thermodynamic equilibrium the following relation is valid /14/:
1
EDADH...UZV = 7 exp mu ﬂWﬂ Iamw...uzvv . (2.1)

IADH...DZV denotes the Hamiltonian of the N particle system, Z is
the canonical partition function of the N particles in an atomic
picture:

) 1
Z = exp {- RyT FOT,v,N0) (2.2

F(T,V,N) is the free energy of the N particles in the volume V with
full interactions.

We consider now a certain configuration C(N) = nﬁzw..‘zzv of the
N particles that corresponds to the assumed cluster distribution
(1.2). We define the probability of the equilibrium distribution for

this configuration by an integral of zAgH,..uzv aver the subspace
C(N):

PPN = § w®(gy...py)day...dp, . (2.3
Cin 1 N 1 N
With (2.1) and (2.2) we get
mon = mxumﬂf m3~<“z% w exp Mu xlw% an...uz&anp.:%z . (2.4)
C(N)

The partition function of the assumed cluster distribution (1.2) can
be calculated by /15/:

Nﬁau<vzvnhmxu-|w11AD.‘.uvaD...au. AN.MV
< { kgT "(A1-- Py } ey N

For a configuration C(N) which in section 3 will be assumed as an
ideal mixture of the clusters with the constraint (1.3) the free
energy is introduced as follows:

FOT,V,N) = = kgT 1In Z(T,V,N) . (2.6)

(Note, that F(T,v,N) (2.6) and F(T,V,N) (2.2) are different func-
tions.)

In this way we get the correct probability moﬁzv of the equili-
brium distribution:

POININ,. . N = exp meqﬁﬂﬂqv<vzv-mﬁqv<,ZHZN...ZZMww .2

68

3. The Free Energy

The free energy (2.6) of the ideal mixture of clusters with the
distribution (1.2) is determined by the partition function (2.5).
With the correct normalization it results:

Z(T,v,N) = N
T Lh

1 1 N Ny
uzpzw_ mmxumu MMﬂ Iww anp,..auz. nu.pv

IH is the Hamiltonian of the cluster with the particle number 1 and
the mass

s

(M - molar mass, z> - Avogadro-constant)

_ 1 2 2 2
=Wy (Pan ot Pyt P3y) v fy .2)
HH denotes a potential contribution which depends only on the size
1 of the cluster.

Integration of (3.1) and use of (2.6) leads to the following ex-

pression for ﬁJm free energy:

z .
FCTLV,N = 20N {8, + kT (n 2 7 - DY, (3.3)
L4
with
Ay = h [ommy 1] 7V/2 (3.4)

To determine the potential term %H we choose a first approximation
similar to the theory of atomic nuclei which includes only volume
and surface effects: )

£(T) = - AL 512/3 (3.5)

The second term of eq. (3.5) is proportional to the surface area
and the surface tension & . It follows

“2/3g (3.6)

where c hsow\auu is the molar density in the cluster. q:m.coc:amn<

_ b5
B = pquWI cNy)

conditions for the potential part are given by

ﬁp =0

t, = ¢, = two-particle binding energy . (3.7

3

The free energy F = G-pV given by (3.3) includes the contribution
of the partial pressures

N - N
- pv o= - 2 Vo= - N, kg T (3.8)
P vl mmw 18
and the contribution of the Gibbs potential
> | )
G = N, p (3.9
= 171
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with the chemical potential of a cluster with size 1
N
T Hwﬁav + kgT 1n T NH . (3.10)
4. The Master Equation
To discuss the time evolution of the cluster size distribution we

suppose the following assumptions:

(i

) The growth and shrink of a cluster is due only to an addition

or evaporation of monomers (Fig. 1). In terms of chemical kinmetics
this process can be represented by:

A T AL, (4.1)

where w' and w~ are the probabilities per unit time of the reaction
in the given directions.

(i

1) Interactions between the clusters with 1 = 2, like coagulation

processes or collisions between two or more clusters are not taken
into account. The probabilities of these events should be negli-

gible in comparison with the probabilities of the reaction (4.1).
. L) ' . L J .
¢ . v n\
L] . . L] .
(S .
. L]
L]
. . *
L . hd
L)
Fig. 1 Typical cluster a»mﬁnpazﬁWD: in a finite <oH%am V and the
elementary processes of attachment and evaporation of monomers

The interactions between the clusters are taken into account via
their influence on the pressure in the system. This pressure is gi-~
ven as a sum of the partial pressures of the different kinds of

clusters (3.8). We define the probability

TAZHZN...zz,ﬁV = P(N,t) (4.2)
that at a given time t there exist N monomers, N, dimers ... etc.
in the system. Then the time evolution of the anmwmn distribution
(1.2) corresponds to the change of P(N,t) with time. This evolution
can be described by a Master equation

dP(N,t)

—s— = WWmsAz_z_vmﬁz_“&v - wNTINPON, D) (4.3)
N' specifies those cluster distributicn which are attainable from
the assumed distribution N via the reaction (4.1). The quantities
w(NIN') are the transiticn probzbilities per time unit for the tran-
sition from N' to N.
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Equation T4.3) 3llows us to introduce a probability flux

JONIN'Y = w(NIN'DP(N',t) - Ww(NTINDP(N;t) (4.8)
Substitution of (4.4) into (4.3) results in
3PN, t)
ST = m UAZ_EV . (4.5
The stationary solution of (4.5) implies that
mwuﬁz_m<v =0 . (4.6)

This is the so-called KIRCHHOFF solution /16/. With the condition of
detailed balance follows a more restrictive form of (4.6):

JININ') = 0. 4.7)
This consistency condition (4.7) means:
w(NIN'IPO(N') = w(N' INJPO(N) . (4.8)

In this equation PO(N) is the probability of the equilibrium dis-
tribution (2.7). To Construct the transition probabilities my means
of (4.8) we need one kinetic assumption with respect to (4.1). In
agreement with earlier investigations /17/ we assume that the pro-
bability of an attachement of a monomer to a cluster of the size 1
increases with the surface of the cluster and with the density of
clusters of size 1 and the density of monomers. In this way we get
for the special process of attachment: 1 » 2 ’
EAZHIH...zwuyz

Lap*lo o NyINp g N

11Ny
2/3 N
Ny (4.9)

We would like to underline that the probabilities of the growth pro-
cess of clusters of different sizes 1=1...N are correlated since
the number of particles is conserved (1.3).

Note, that for 1=1 the number of monomers changes from N, to

zm-m U<onmmﬁwzmmawamw.q:mﬁnm:mwﬁwo: probability in ﬁjww case
reads:

+
= SHAZHZHV = o1

. , . Ny (N -1)

sumzwlw ZN+H zu...zz_zHZNZu...ZZVnnEHmzHV =, v . (4.10)

From (4.8) with (2.7) and (4.9) we get the transition probability

for the oppositve process of (4.9) (evaporation) /18/:
sﬁzw...zwzw+u...z _ZH-H...zwupz N

N
P _ 2/3 1 1
=W N+ D) = 197Ny = exp ﬁﬂmw

H+H+H... zv

* MﬂAﬁv<,zH-H...ZHIH Np Lo ND-FCT, VN LNy ZH+H...ZZVQW . (4.11)

If we neglect in (4.11) a small term AH\H+HvHu\m“ which is nearly
equal to one, we get for the transition probability for the evapo-

ration process ZH...zH...zz — zH+H...2H|H+H zwup“.zz :

- _ 2/3
wi(Ny) = a1 Ny =3 OXP ﬂI4AmH|mH|HVu (4.12)

if 1 =2

y &g,
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The transition probability of the evaporation of a monomer is not
determined by the whole cluster distribution as in (4.9). Again, this
transition probability is modified for the evaporation of a dimer,
because the transition changes zHu N, to AZH+NVV Azmnyv. We underline

that in our model the transition probabilities for all processes dif-
ferent from (4.9) and (4.12) are assumed to be zero.
With the introduced transition probabilities the master equation

(4.3) reads in an explicit form with W, =

N £z+H = 0:

. _ . _
PN,T) = ENAZMEEZH-NZN?..zzys-z&z%_éuSéuﬁzulv

+
‘mAzHIHMZN|HZu+H...zzvﬁv+zwmzw+mv 1A2H+Nz |H..‘zz~ﬁv

2

N
. - i}
=By D= W (T PO, )+ W W] (N PPN =T Ny Iy TN, )

+
wwp_q (NJ+INy L+ 1DP(N +1.. Ny FINg=L Ny

S C{CENCRI TR (4.13)

5. Discussion

(1) First we investigate the stationary probability distribution
vmoAszw...zH...ZZV given by (2.7). The extremal probability we
find from 3 P%/ wZHuo. It yields the equilibrium distribution of
clusters:

NO 2 2 NO o3 £
IWdLV ~exp AH 1n IWQIP - ﬂWﬂw , 1=2,...,N (5.1)
3]
N
where N = N - 3 1 N7 .
1 =z 1

Oue to this boundary condition the solution of (5.1) is cemplicated.
Inside the binodal region we generally expect multiple solutions
in the AzH...ZZV space. At least the system is a bistable one where

two stable cluster distributions can exist separated by regions of
a minimal probability. Figure 2 demonstrates that we find one re-
gime with a large number of monomers and a second regime with a
stable configuration of large clusters in coexistence with a small
number of monomers.

The question which cluster distribution is realized depends on
the absolute value of the probability distribution in the AZH...zzv

space, which is determined by the thermodynamic parameters N,V,T.
The problem of transitions between the two stable states of the clu-
ster distribution can be turned out with the concept of the mean
first passage time /19/ which allows the calculation of the mean
transition time from the monomer phase to the cluster phase.

It can be estimated by the consideration of the eigenvalue problem
of (2.7),by finding the smallest eigenvalue X, which is different
from zero. In bistable systems X, is mmnmwmﬂmm from the spectrum
of the other eigenvalues Npmpum,w,...v /20/.

(ii) Let us derive the egquations of the mean values /21/. The mean
cluster number with size k

AN (YD = 57 N, P(N,...N
k o) k 1

no
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Fig. 2 Sketch of the equilibrium cluster distributions:

a) corresponds to a monomer phase, in b) the cluster phase is do-
minating

obeys the system of equations

° 3 -
3TN = (N D = W ONN DD (5.2)

V-4
+ - -
st SN = - GwpNp) - wp N+ wm NN =] (N 100 (5.3)

The derivative in (5.2), which is a discrete one, expresses the con-
version of the cluster number during the growth and shrinkage of
clusters (1 > 2). The mean cluster number changes only due to the
formation or evaporation of dimers

N

3 _ + -

3T TMN <N =<l OND) = wp (DD (5.4)
The alteration of the actual pressure is defined by the equation
for the mean numbers of clusters and monomers:

. xmq s N xma N-1 . B

P(E) = - <% NM.* (N = - m NCHU LR RIS

(5.5)

Obviously it. follows for the whole number of particles in the con-
sidered case:

N
wlﬁ va * WNAH zwvw =0 . (5.6)

(iii) Treating N, as a continuous function of 1, we make use of a
Kramers~Moyal expansion /22/ in (5.2). Approximating AzH sz pe

AszAsz we obtain a fokker-Planck equation for the mean cluster
distribution by neglecting higher than the second derivative:

Wm
S
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If we further neglect the diffusion due to fluctuations we derive
the deterministic cese (Liouville equation)

> 3 .2/3 A 1 86
St AZHV = - MHQH AZHV ﬁ|<| - N‘wmxuﬁﬂ |WIHV.N . 122 (5.8)

In both equations (5.7) and (5.8) the monomer distribution results
.from the boundary conditions (5.6).

Equation (5.8) is a balance equation. Therefore we find the de-
terministic kinetics

} Ny 3f
_ 2/3 ﬁ <y 1 1 1 @
1 = «1 ﬂlﬁwmxgﬂﬂ . 122

(5.9)

By introduction of the cluster radius r,(t) and by a linear expan-
sion of the exponential function in Am.wV. results for a single
cluster the known kinetic equation /23/:

- g 49 1 1
n(t) = =5 (ix 173 ﬁa o - M1dwqg ; (5.10)
1 3 oz>v c 1
where noAﬁv is the time-dependent critical radius
<N.D>
_ 1 3 A -1
r(t) =dy Un —4— A" + , (5.11)

d_ being the capillarity length: d_ = 2 & (c N xmqvuy. The density
of the free monomers AzHV\< acts a8 an mwmmnﬁwom supersaturation.

(iv) The master equation (4.13) can be reduced to a kinetic equa-
tion for single clusters as well. If mz +HAH,ﬁV is the probability
1

that a l-mer is present in the environment of zH free monomers at
time t, we propose the following ansatz:

. Gy () N vz mm
PN . N, ) = f1p (1,t) 5 Ng=N- 1N
1 N N, TN T o el 1 = 1

(5.12)
The index zH+H of 12A+HAHuav labels the number of free monomers at

the very beginning of forming the present droplet. It is an in-
variant during the droplet growth. It yields

ZH+H

v TAZA+HV+AH-HVAH-Hu&V

) 2/3
Py, 1 (L) = {11

£1,,-1
1 25 Jiah
+ = D exp Mmq P en 1)+ (101 (11D
4 1
N £,-1
Sq12P{ L 55 ol mef?zl?c : (5.13)
where
. f N, (N;-1)
_ 2/3 1 2 it
By (1) = oyBy (1) [ 2 TP 22~ ] saw

Equation (5.14) is the balance equation for the probability of the
free monomers and realizes certain physical assumptions. In the
considered case it implies the solution of the equations (5.13)

74

and (5.14) under the constraints (1.3). Another possibility where
only one single cluster performs the nucleation process is shown
in ref. /17/. If we assume N, = const. it follows from (5.13) the
classical Becker-Déring ﬁ:mow< /5/.
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